
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 597

CMS: An Improved Scheme for Dependency-

Based Load Balancing in Cloud Environment

Neethu .M.S
1
, Jayalekshmi .S

2

M.Tech Student, Department of Computer Science & Engineering, LBSITW, Trivandrum, India 1

Associate Professor, Department of Computer Science & Engineering, LBSITW, Trivandrum, India 2

Abstract: Cloud computing provides an opportunity to dynamically share the resources among the users through

virtualization technology. In this paper, a scheme for load balancing is proposed on the basis of dependency among the

tasks. CMS consists of three algorithms including Credit-based scheduling for independent tasks, Migrating Task and

Staged Task Migration for dependent tasks. The Credit-based method is used for scheduling the independent tasks
considering both user priority and task length. Each task will be assigned a credit based on their task length and its

priority. In the actual scheduling of the task, these credits values will be considered. Task Migration algorithm is used

to guarantee balancing of loads among the virtual machines. Task migration is done such that the tasks get migrated

from heavily loaded machines to comparatively lighter ones. Thus, no rescheduling is required. For dependent tasks,

the dependencies between tasks are considered and the technique termed as data shuffling is used. In data shuffling, a

job is divided into several tasks according to the execution order. The method used here is that the tasks in one stage

run independently, while the tasks in different stages must be executed serially. Finally the system is simulated and

experiments are conducted to evaluate the proposed methods. This work also concentrates on a simulated study among

some common scheduling algorithms in cloud computing on the basis of the response times. The algorithms being

compared with the work includes: Random, Random Two Choices (R2C) and On-demand algorithms. The evaluations

demonstrate that Credit-based scheduling algorithm significantly reduces the response time.

Keywords: Load Balancing, Virtual Machine, Scheduling, Dependency.

I. INTRODUCTION

Cloud computing [13] is a kind of Internet-based

computing, where shared resources, data and information

are provided to computers and other devices on-demand.

Cloud provides three types of services: software as service

(SaaS), Platform as Service (PaaS), Infrastructure as

Service (IaaS). Cloud computing provides facilities for

dynamically accessing the virtualized assets in the form of
services. Mainly clouds are of two types: Private and

Public.

Cloud solutions are simple and they don’t require long

term contracts and are easier to scale up and down as per

the demand. Prefect planning and migration services are

needed to ensure a successful implementation. Both Public

and Private Clouds can be deployed together to leverage

the best of both. Load balancing is a computer network

method for distributing workloads across multiple

computing resources.

Load balancing is one of the central issues [6] in cloud
computing. It is a mechanism that distributes the dynamic

local workload evenly across all the nodes in the whole

cloud to avoid a situation where some nodes are heavily

loaded while others are idle or doing little work. Some of

the jobs may be rejected due to the overcrowding suitable

virtual machine. Hence various load-balancing algorithms

have been proposed in which live migration of load is

done in virtual machines to avoid the under utilization.

Depending on the current state of the virtual machine, load

balancing algorithms can be categorized into two types:

static and dynamic algorithms. A load balancing algorithm

which is dynamic [12] in nature does not consider the

previous state or behavior of the system, that is it depends

on the current behavior of the system. Static algorithms

do not consider the current status of a virtual machine. The

static algorithm uses a method where the final selection

process of a VM is already predefined and cannot be

changed during process execution to make changes in the
VM load.

Another classification of load balancing approaches based

on the behavior of the algorithm can be of three types:

centralized, distributed and hierarchical. In centralized

approach, a single node is responsible for managing the

whole system. It reduces time but creates great overhead

and recovery is difficult. In distributed approach, each

node independently builds its own load vector and

decisions are made using this. It widely used for

distributed systems.

Hierarchical approach operates in master slave mode.
Based on initiator three types of algorithms are possible:

sender initiated, receiver initiated and symmetric. Node

with the higher load initiate load balancing in sender

initiated method. At the same time in receiver initiated,

under loaded node initiates load balancing. Symmetric

uses the concept of both sender and receiver initiated

approaches. So the idea used in symmetric method is that

at low system loads sender initiated node is more

successful in finding under loaded nodes and at high

system loads receiver initiated component is successful in

finding overloaded nodes.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 598

II. RELATED WORKS

A. Fuzzy based Firefly Algorithm [2]

This algorithm was proposed with a goal to improve

performance through partitioning the cloud inorder to

balance the loads across the available partitions as shown

in Fig.1. The nodes are to be classified into various

groups like lightly, normal and heavily loaded. Then the

tasks set are entered as input and given to the load

balancer.

Fig. 1.Concept of partitioning

Fireflies “attract itself to light” and this is the main
characteristic which is being used as the role of a VM for

the implementation of the algorithm. A Balance Factor [2]

is formulated which is given by:

BF=(α*β)/(δ*ε*ρ) (1)

where, α –Length of input file

β- Size of file in kilobytes

δ- Processing capacity of the VM supplied with the load

ε- Processing element number

ρ- Speed in number of CPU cycles
The value of balance factor always lies between 0 and 1.

As a preliminary fuzzification process the algorithm

assigns predefined values like high, medium, low to the

tasks that arrives. The fuzzy engine defines the output

using a defined rule and on defuzzification process using

Smallest of Maximum (SOM) method, the output is

obtained. A membership function [1] is calculated using

Eq. (2):

Z_SOM=MIN(ⱯZ € Z1,Z2) (2)

where, Z-Output variable which is the minimum amongst
the output variables Z1,Z2 etc.

Initially the VMs are allocated an ID from M1 to Mn

Cloudlets are created and each cloudlet is assigned with an

ID from N1 to Np .Based on an available scheduling

scheme the tasks are scheduled. Usually Round-robin

scheme is used.

Now a best partition is selected and from that partition a

VM is selected and its balance factor is calculated. When

the value of BF is less than 1, allocate load to that VM and

update the parameters. Otherwise when the BF value is

greater than or equal to 1, the algorithm selects another

VM. After allocation of load to a VM, if the time required

is found to be greater than a predefined threshold value

then fuzzy logic is applied.

B. Honey Bee Behavior Inspired Load balancing [3]

The algorithm [3] was proposed to achieve load balancing

by improving through put and minimizing the waiting time

of the tasks. The tasks removed from VM were treated as

honeybees. The bee colony consists of three types of bees.

They are Scout bees, Forager bees and Onlooker bees.
Scout bees are those bees which carry out random searches

and on finding a bee hive it informs the forager bees.

Forager bees are those going to the food source which is

visited by scout bees.

HBB-LB [2] is a dynamic load balancing technique.

Capacity of a virtual machine is given by (3):

Cj=penumj x pemipsj x vmbwj (3)

where , penumj – Number of processors in VMj

 pemipsj – Million instructions per second of all
 processors in VMj

 vmbwj - Communication bandwidth ability of VMj

Thus the capacity of all virtual machines is give by sum of

capacities Ci
 of each virtual machine.

Load on a VM is the total length of the tasks assigned to it.

From this the standard deviation of load is calculated.

The load balancing decision is taken using two steps . The

first one is finding the state of VM from the calculated

value of standard deviation. When the calculated standard

deviation of load is between 0 and 1, system can be said to

be balanced. The second step deals with finding the

overloaded VMs by checking whether the current
workload of a VM exceeded the maximum capacity for

that particular VM.

C. Ant Colony Based Load Balancing Algorithm [4]

The main aim of this algorithm [4] is to search for an

optimal path between the source of food and colony of the

ant on the basis of their behaviour. Ants keep record of

each and every node that they visits and record that data

for future decision making. As a result they deposit

pheromones during their movement. On allocation of

VMs, the concept is that each ant works independently and
represents a VM “looking” for a host to get allocated. A

master table is created which has the details of the loads of

each host and is termed as pheromone table.

At first a list of all the hosts are created which can be

allocated with the VMs. The ant’s moves through the

network continuously encountering overloaded and

underloaded nodes. Along the traversal through the nodes

the ants updates the pheromone table. When an ant

encounters an overloaded node in its movement, such that

it has previously encountered an underloaded node then it

goes back to check the underloaded node to check whether

the node is still under loaded or not. If it still finds that the

node is underloaded then the load is distributed to that
node and this process is known as exponential back-off

strategy.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 599

Each time a job is assigned to a VM, a round-robin

scheduling was used. The algorithm uses indirect

communication to exchange information.

D. Stochastic-Hill Climbing Algorithm [5]

This algorithm helps in allocating jobs to servers or VMs.

Stochastic-Hill Climbing algorithm [5] is a variant of

Incomplete method. There are main two concepts, a

candidate generator and an evaluation criteria. Candidate

generator maps one solution candidate to a set of possible

successors. Evaluation criteria ranks each valid solution.
The algorithm [5] can be summarized as follows and the

flowchart can be depicted as in Fig.2. An index table is

maintained for storing the state of VM servers. The states

can be either VMBUSY/AVAILABLE. At the start all

VMs are available. When a new task arrives a VM is

randomly generated by its unique identifier. The allocation

table is checked to know the status of the VM. If it is

found unallocated, the task is allocated to it and the table

is updated with the current information. Otherwise using a

random function, generate another VM such that it is able

to handle the task efficiently. When the VM finishes
processing, VM de-allocation is done. The process gets

repeated again on obtaining new tasks.

Fig.2 Flowchart of Stochastic Hill Climbing Algorithm

E. Load Balancing Model based on Cloud Partitioning [8]

The model [8] is based on partitioning the cloud. There is
a main controller which deals with the various partitions.

So when a job arrives it is the main controller who decides

which partition to get it allotted.

The cloud partition status is determined before it gets

assigned with a job. The various status are: idle, normal

and overloaded. The function of cloud partition balancer is

to collect information about the status of the nodes in that

particular partition. For finding the status of a node , the

load degree has to be calculated. This can be obtained

from the static and dynamic parameters of a system.

When the load degree is zero, the system is idle and when
it exceeds the higher value of load degree then it is said to

be overloaded. In other conditions, the node is said to be in

normal state.

The load degree values are entered into a Load Status

Table [8] by the load balancer of a particular partition.

When a job arrives at a cloud partition, the table is updated

by the balancers. The nodes with status value idle uses

round robin scheduling method for the jobs that are

ordered based on the load degree from the lowest to the

highest. The system builds a circular queue and walks

through the queue again and again. Jobs will then be

assigned to nodes with low load degrees.

F. Autonomous Agent Based Load Balancing (A2LB) [9]
A main concept used in all algorithms is that whenever a

node gets overloaded, the load balancer has to distribute

these tasks such that the load gets balanced on another

node. A2LB [9] uses three agents: Load agent, Channel

Agent and Migration Agent.

The main aim of a Load Agent (LA) is to calculate the

load on every available virtual machine after a new job is

allocated in the data centre. This agent is uses a table
termed as VM_Load_Fitness table which contains the

records of specifications of all virtual machines of a data

centre. Channel Agent (CA) controls the transfer policy,

selection policy and location policy. Migration Agents

(MA) are initiated by channel agent.

Load agent determines the workload and calculates the

fitness value. When the fitness value is below a threshold,

load balancing needs to be performed. When the load

agent finds that the status of a VM is critical, it will
intimate and send the specification of that VM to the

channel agent. The channel agent will initiate the

migration agents to other data centres for searching the

virtual machines that satisfies the similar specifications.

Migration agents will travel one way. When it finds a

destination data centre, migration agent will first send an

acknowledgement message to its parent channel agent.

Then it will check with load agent of that data centre for

finding the virtual machines having similar configuration

as desired. If no such VM exists at that data centre,

migration agent sends a <Not-Applicable> message back
to its parent channel agent and waits for <self_destroy>

instruction from it. When receiving responses from

various migration agents, channel agent maintains them in

response analysis table and thus live migration is achieved.

III. PROPOSED SYSTEM

The parallel job scheduling should address two challenges:

low response time and job correlation. Response time is

one of the most critical issue for a parallel system. Inter-

communicated jobs and resource-related jobs are very

common in parallel systems. A scheduling algorithm
should pay attention to the dependencies of the tasks; tasks

dependent on other tasks or system resources have to

suspend until the preconditions are satisfied. In this paper, a

hybrid scheduling scheme is proposed. We use a Credit-

based scheduling method to reduce communication

overhead between the virtual machines. A task migration

algorithm is designed to keep the workload balanced. A

data shuffling mechanism is employed for dependent tasks.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 600

A. Credit-based Scheduling of Independent Tasks

This method considers mainly two parameters: Length of

the tasks and Priority of the tasks given by user. The

scheduling [11] is based on a credit system such that the

each task is assigned a credit value based on their length

and priority.

 Calculation of task length credit:

The task to be scheduled on the available virtual machines

will be of different length. When the tasks are arranged on

the increasing order of the length, tasks with shorter length
will be present in the beginning of the list and that of

highest length will reside at the last.

The credit calculation for task length will work such that it

takes tasks from both front and back as follows:

 Step 1: Find the length of each task as TLi.

 Step 2: Calculate the average length of tasks as avglen.

 Step 3:Calculate the difference in length with respect to

avglen as TLDi= | avglen-TLi |, (4)

where, TLDi is the task length difference of task i.

 Step 4: Four values v1,v2,v3 and v4 are calculated in

the range of task length from the array length of the
tasks:

v1=high_len/5 (5)

v2=high_len/4 (6)

v3= v2+ v1 (7)

v4= v3+ v2 (8)

 where, high_len is the highest value of task length.

 Step 5: For all submitted tasks in the set ;Ti

 TLDi= | avglen-TLi |

 If TLDi ≤ v1

 then credit =5

 else if v1 < TLDi ≤ v2

 then credit =4

 else if v2 < TLDi ≤ v3

 then credit =3
 else if v3 < TLDi ≤ v4

 then credit =2

 else v4 > TLDi

 then credit =1

 Return credit as length_credit.

This method [11] schedules tasks from the middle of the

list such that it neither takes task with larger length nor task

with lower length.

 Calculation of task priority credit:

When the tasks are scheduled, there is a problem of treating

them with similar priority. Each task may be assigned
different priority, which can be represented as a value

assigned to each task and this value can be the same for

more than one task. Suppose there are 5 tasks, then there

will be 5 different credits. So we can say that there will be

10 different credits when dealing with 10 tasks. The fact is

that these credits [11] are not set by default and hence will

change based on the priority that is assigned by the user.

The steps can be summarized as follows:
Step 1: For each task Ti find the task with the highest

priority.

Step 2: Find a division_factor

Step 3: For each task with priority Tpri

 find Pri_frac(i)=Tpri /division_factor (9)

 Set priority_credit as Pri_frac

Step 4:End For.

The div_fac is chosen such that if highest value of priority

is a two digit number then choose div_fac is 100. If it is 3

digit then division_part is 1000. The two credits calculated

are used to find the total credit as

Total_crediti=length_crediti x priority_crediti (10)

For each task i, the Total_crediti represents the credit

based on both length and priority. Finally tasks will be

scheduled such that those having highest credit value will

be scheduled first.

B. Migrating Task

Load balancing removes the situation of large difference in

resource usage level by avoiding virtual machines from

getting overloaded in the presence of low loaded machines.
Live migration can be used to balance the load across the

systems. In this method, the tasks that were finally obtained

after the calculation of credit will be scheduled in the order

of highest credit value and they will be allocated with

virtual machines which has the least load at the current

time. After scheduling, the status of VMs are checked and

the if there is any heavily loaded VM then the task

scheduled to that VM can be migrated to another low

loaded VM. So fair allocation of the available resources

can be satisfied. This can be summarized as follows:

Input: Set of VMs {VM1,VM2,….VMn} and the batch of

tasks after applying credit calculation {T1,T2,….Tm}
Output: Migrating task on buzy slave to low loaded VM.

 Step 1: For each VMi in {VM1,VM2,….VMn}

 Step 2: Calculate the total length of tasks scheduled to

it as VMi_length

 Step 3: End for

 Step 4: Calculate the execution time for the last

scheduled task for each VMi as Tj_execstart and

execution finish time as Tj_execfinish.

 Step 5: If there exists any VMk whose Tj_execfinish<

Tj_execstart then move the task Tj to the VMk for
execution

Fig.3 migrating tasks inorder to balance the loads across

the available VMs

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 601

C. Staged Task Migration for Dependent Tasks

Suppose there are n numbers of dependent tasks (T1, T2,

T3… Tn). The scheduling problem with dependent task [14]

is that a child task cannot start its execution until all its

parent tasks have finished their execution. The tasks in one

stage run independently, while the tasks in different stages

must be executed serially. To dispatch tasks with Data

Shuffling [7], a queue named Shuffling FIFO is used which

holds the tasks in the order to be executed. The steps can be

summarized as follows:

For a new incoming task Ti in the current stage, choose a

VM with low workload and dispatches the task to it. Then

the queues in virtual machines will not be changed and

hence the optimal scheduling is achieved. At this time, the

tasks of the later stage are popped out from the FIFO and

dispatched to virtual machines without waiting for the

completion of the tasks in the current stage.

Fig.4 Ordering the dependent tasks for scheduling.

Figure.4 shows the way the tasks are arranged in the order

it is to be scheduled. Thus the final ordering for scheduling

is that as soon as task A completes its execution, B and C

can be scheduled for their execution. Whenever B

completes execution, task D can be scheduled for

execution but task E can be scheduled only if tasks B and

C completes their execution.

IV. RESULTS AND DISCUSSIONS

In real cloud, experimenting new strategies and methods is

very difficult due to security, reliability, cost and speed.

Hence a good simulator is required for this purpose.

CloudSim toolkit [1] is one such simulator designed for the

same. CloudSim is a discrete simulation framework that

allows modeling, simulation and experimenting various the

cloud computing services.

Implementation and performance analysis of the algorithms

were done by extending the various classes of CloudSim.

The simulator provides a test environment for evaluating
the assumptions made by the researchers and it is free of

cost.

The proposed approach was implemented using CloudSim

toolkit. The simulation was designed with 10 physical

servers. A server has an Intel E5 CPU which includes 8

physical cores and 64 GB memory. Each server is

virtualized into required Virtual Machines (VM), each VM

has 1 core, 2 GB memory and Ubuntu Linux Operating

system.

A. Scheduling and Migration of Independent Tasks

As part of evaluating the system, comparisons were carried

out on Random, Random Two Choices (R2C) and On-

Demand schedulings[7] and Credit-based scheduling.

The idea of random algorithm is to randomly select VMs to

assign the selected jobs. The status of the selected Virtual

Machine can be heavy or lowload, but this algorithm does

not consider this context. Hence, this may result in the

selection of a VM under heavy load and the job requires a

long waiting time before service is obtained. So the
complexity of this algorithm is quite low and the

processing is in the order of first come first serve.

A variation of this algorithm is Two Random Choices

(2RC) [10], that randomly chooses two VMs and assigns

the task to the fastest one, i.e., the one with the lowest

maximum response time. In On-Demand[7] method of

scheduling ,each virtual machine monitors its task queue.

When it detects that the a particular virtual machine has

enough resources for a new task, it will send an On-

Demand request to the broker that keeps a lightweighted

metadata of the tasks. Then a new task will be scheduled to

that virtual machine.

In figure.5 (a) the comparison of response time for the three

algorithms were done varying the number of VMs keeping
the number of tasks as constant (For this simu lation

number of tasks is kept as 1000). The X-axis represents the

number of virtual machines and Y-axis represents the

response time in milliseconds. It is clearly evident that the

response time is greatly reduced for On-Demand

scheduling algorithm than the other two algorithms.

Figure.5 (b) shows the comparison of response time for the

three algorithms varying the number of tasks and keeping

the number of VMs as constant (For this

simulation number of virtual machines is kept as 100). The

X-axis represents the number of tasks and Y-axis

represents the response time in milliseconds. It is clearly

evident that the response time is greatly reduced for On-

Demand algorithm.

Another evaluation was performed comparing On-Demand

and Credit-based method before and after applying

migration. In figure.6 the comparison of response time for

the two algorithms were done varying the number of VMs

keeping the number of tasks as constant (For this
simulation number of tasks is kept as 1000). The X-axis

represents the number of virtual machines and Y-axis

represents the response time in milliseconds. The length of

tasks was generated randomly and the same set were given

as input for length for the tasks. The credits in Credit-based

scheduling were also generated randomly. From this figure

6 it is evident that the response time is greatly reduced for

Credit-based scheduling algorithm than On-Demand

algorithm.

From this it is clear that using Credit-based scheduling

achieves better load balancing compared to using On-

Demand scheduling algorithm.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 602

Fig.5 Comparison of Random, RandomTwoChoices(R2C) and On-Demand Scheduling methods

Fig.6 Comparison On-Demand and Credit-based Scheduling methods

B. Staged Task Migration for Dependant Tasks
The algorithm for Data Shuffling was implemented in

WorkflowSim [15] which is an extension to CloudSim

simulator. WorkflowSim has simple models of task

execution that consider task dependencies which is not

supported by CloudSim alone. The response time for a set

of dependent tasks were calculated. It was found to be less

than the response time, if the dependent tasks were

scheduled in the order of First Come First Serve.

Staged Task Migration for dependent tasks was compared

against normal FirstCome First Serve (FCFS) method for

dependent tasks. Same data dependent task model was
considered for both these algorithms and the response time

results shows that it takes only 20280ms for Staged Task

Migration algorithm than FCFS algorithm which takes

67370ms. Hence the Staged Task Migration method can be

said to be efficient.

V. CONCLUSION

The paper considers two cloud scenarios. First scenario is

based on independent tasks. The second scenario is based

on dependent tasks. On evaluating the simulation results it
is concluded that, the proposed algorithm for independent

tasks works efficiently than the other two methods namely
Random and Random Two choices. It is also observed

that the response time of task is decreasing after a certain

value in the number of tasks. In future, the proposed

scheme can be enhanced so as to consider other parameter

like deadline and QoS factors.

The algorithm for dependant tasks works well for the given

tasks. In future, extend this algorithm to balance the loads

of dependent tasks considering various QoS factors in a

pre-emptive manner.

REFERENCES

[1] Buyya, R., Ranjan, R., and Calheiros, R.N. “Modeling and

Simulation of Scalable Cloud Computing Environments and the

CloudSim Toolkit: Challenges and Opportunities” , International

Conference on High Performance Computing and Simulation,

HPCS 2009.

[2] N. Susila, S. Chandramathi, Rohit Kishore, “A Fuzzy-based Firefly

Algorithm for Dynamic Load Balancing in Cloud Computing

Environment” Journal of Emerging Technologies in Web

Intelligence, vol. 6, no. 4,pp.435-440, IEEE November 2014

[3] Dinesh Babu .L.D, P.Venkata Krishna,”Honey Bee inspired load

balancing of tasks in cloud computing environment “,Applied Soft

Computing, vol.13,pp.2292-2303 ,Elsevier 2013.

[4] Elina Pacini,Cristian Mateos,Carlos Garcia Garino,”Balancing

throughput and response time in online scientific clouds via Ant

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56130 603

Colony Optimization”, Advances in Engineering Software

,vo.8,pp.31-47 ,Elsevier 2015.

[5] Brototi Mondala, Kousik Dasgupta, Paramartha Dutta,” Load

Balancing in Cloud Computing using Stochastic Hill Climbing-A

Soft Computing Approach” Procedia Technology ,vol.4,pp.783-

789,Elsevier 2012.

[6] B. R. Kandukuri, R. Paturi V, A. Rakshit, “Cloud Security Issues”,

IEEE International Conference on Services Computing, pp. 517-

520, IEEE 2009.

[7] Yu Liu, Changjie Zhang, Bo Li, Jianwei Niu .” DeMS: A hybrid

scheme of task scheduling and load balancing in computing

clusters”, Journal of Network and Computer Applications, Elsevier

2015.

[8] Gaochao Xu, Junjie Pang, and Xiaodong Fu , “A Load Balancing

Model Based on Cloud Partitioning for the Public Cloud” , vol.18

,pp. 34-39,IEEE 2013.

[9] Aarti Singha, Dimple Junejab, Manisha Malhotraa ,” Autonomous

Agent Based Load Balancing Algorithm in Cloud Computing

“,International Conference on Advanced Computing Technologies

and Applications (ICACTA2015) ,vol.45,pp.832-841 ,Elsevier

2015.

[10] Michael Mitzenmacher, ” The Power of Two Choices in

Randomized Load Balancing”, IEEE Transactions on Parallel and

Distributed Systems, vol. 12, no. 10, pp.1094-1104 ,IEEE 2001.

[11] Antony Thomas, Krishnalal G, Jagathy Raj V P ,” Credit Based

Scheduling Algorithm in Cloud Computing Environment”, Procedia

Computer Science, vol.46, pp. 913 – 920, Elsevier 2015.

[12] Venubabu Kunamneni” Dynamic Load Balancing for the Cloud”

International Journal of Computer Science and Electrical

Engineering (IJCSEE) ISSN No. 2315-4209, Vol-1 Iss-1, 2012

[13] L. Wang, GregorLaszewski, Marcel Kunze, Jie Tao, ―Cloud

Computing: A Perspective Study‖, New Generation Computing-

Advances of Distributed Information Processing, pp. 137-146, vol.

28, no. 2, 2008.

[14] Ousterhout K, Wendell P, Zaharia M, Stoica I, ” Batch sampling:

low overhead scheduling for sub-second parallel job”, Berkeley:

University of California; 2012.

[15] Weiwei Chen, Ewa Deelman , “WorkflowSim: A Toolkit for

Simulating Scientific Workflows in Distributed Environments”,

The 8th IEEE International Conference on eScience 2012 (eScience

2012), Chicago, 2012.

